Automatic Adjustment Mechanisms in Pensions: Rationality vs. Populism

Axel Börsch-Supan

Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy, Technical University of Munich (TUM), and NBER

Virtual lecture, Jerusalem, 07 September 2022

Contradiction 1

Pension systems need to adapt to an often hostile environment

Demography: population aging and migration
Macroeconomy: productivity growth, inflation

vs.

Pensioners and workers demand stability and dependability

Same replacement rate as their parents
No changes in retirement age
System stability requires long-term rules
Wage indexation
Price indexation
Retirement age indexation to life expectancy

vs.

Attracting voters requires actionism
Minimum pension
Inflation bonus
Retirement age reduction

1. Prevent poverty
 Means-tested base pension

2. Automatic adjustments
 Pay-as-you-go pillar
 Retirement age
 Life expectancy
 System dependency

3. Fully-funded pillars
 Mandatory (occupational, state)
 Voluntary (individual)

 „Nudging“
1. **Prevent poverty**
 Means-tested base pension

2. **Automatic adjustments**
 Pay-as-you-go pillar
 - Retirement age
 - Life expectancy

3. **Fully-funded pillars**
 - Mandatory (occupational, state)
 - Voluntary (individual)

1. Or latest year available.

Mechanics:

Credits:
All contributions are credited on a life-time basis to an individual account on a currency basis. Accounting rules are equivalent to financial accounts.

Rate of return (the crucial [N]DC parameter!):
Balance accumulates with a notional rate of interest: pay-as-you-go fundamentals (internal ror=n+g, productivity & demography)

Benefits:
Conversion at retirement into an annuity, allows flexibility in choice of retirement age. Stock-flow conversion according to actuarial rules, i.e. function of SS wealth, internal ror and longevity.

Advantages:
• Actuarial fairness/exposes redistribution:
• Automatic response to macro environment:

Disadvantages:
• Not automatically balancing (short-run stability)
• Not automatically sustainable (long-run stability)
• No substitute for pre-funding
1. **Prevent poverty**

 Means-tested base pension

2. **Automatic adjustments**

 Pay-as-you-go pillar

 - Retirement age
 - Life expectancy

3. **Fully-funded pillars**

 - Mandatory (occupational, state)
 - Voluntary (individual)

 “Nudging”

Divide longevity gains between work and retirement

- Need about **2 years work** to finance **1 year retirement** since ≈ 40 years life time work and ≈ 20 years retirement

- **Hence: 2 to 1 rule**
 - e.g.: 3 added life years
 - = 2 added work years
 - + 1 added year of retirement

- **Examples**: Netherlands, Denmark, Norway, France (private sector)
1. Prevent poverty

Means-tested base pension

2. Automatic adjustments

Pay-as-you-go pillar

- Retirement age
- Life expectancy

Replacement rate

System dependency

3. Fully-funded pillars

- Mandatory (occupational, state)
- Voluntary (individual)

Nudging

Budget constraint of a pay-as-you-go pension system:

\[
\text{Revenues} = c \times w \times NW \\
\text{Expenditures} = r \times w \times NP
\]

\[c = \text{contribution rate}, \quad w = \text{wage}, \quad NW = \text{workers}\]

\[r = \text{replacement rate}, \quad w = \text{wage}, \quad NP = \text{pensioners}\]

Hence \[c/r = NP/NW\]

NP/NW = dependency rate

Population aging \[\Rightarrow NP/NW \uparrow\]

Policy 1: keep replacement rate constant \[\Rightarrow \text{need to increase the contribution rate}\]

(DB principle) \[\Rightarrow \text{all burden on the younger generation}\]

Policy 2: keep contribution rate constant \[\Rightarrow \text{need to decrease the replacement rate}\]

(DC principle) \[\Rightarrow \text{all burden on the older generation}\]

Policy 3: compromise between DB and DC

\[\Delta \text{benefit} = \alpha \times \Delta \text{wages} + (1 - \alpha) \times \Delta NW/NP\]

"sustainability factor"
1. Prevent poverty
 Means-tested base pension

2. Automatic adjustments
 Pay-as-you-go pillar

<table>
<thead>
<tr>
<th>Retirement age</th>
<th>Replacement rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life expectancy</td>
<td>System dependency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory (occupational, state)</th>
<th>Voluntary (individual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDC</td>
<td>„Nudging“</td>
</tr>
</tbody>
</table>

3. Fully-funded pillars

Funded pillars

Assets in pension funds, 2014

Source: OECD
But still serious problems
- Cannot address the poor
- Markets failed to weed out costly pension plans
- Bad asset allocation (government bonds, home bias)
- Wide-spread lack of information: employees and employers

Need adaptable PAYG system for the less affluent

How to design adaptable pension systems?
- Sustainability vs. adequacy challenges
- Guiding principles: 1. Separate issues, 2. Create automatic stabilizers

Zero pillar reforms: means-tested base pension avoids old-age poverty

First pillar reforms:
- Automatic adjustment of retirement age to life expectancy
- Sustainability factor: Index benefits to dependency ratio
- Has been very successful as compromise between adequacy and sustainability
- Even better: Notional defined contribution (NDC) systems which adapt to population aging and create a sense of actuarial fairness
- Political reality? Populist temptations!
- Our task: Invent compromises such as “sustainability factor” and the “2:1 rule for retirement age” which are key to compromises